Impaired osmotic sensation in mice lacking TRPV4.

نویسندگان

  • Atsuko Mizuno
  • Naoko Matsumoto
  • Masashi Imai
  • Makoto Suzuki
چکیده

The Ca2+-permeable cation channel TRPV4, which is part of the Trp family located in the circumventricular organs, is activated by cell swelling. To investigate the role of TRPV4 in osmotic sensation, we disrupted the TRPV4 gene in mice and examined the effect on osmotic metabolism. Disruption of the mouse TRPV4 gene did not influence either water intake behavior or serum osmolality. Short-term salt ingestion, however, seemed to impair the transient free water clearance. The level of serum arginine vasopressin (AVP) of TRPV4-/- mice was not significantly changed under normal conditions but was significantly increased under stimulated conditions. Incubation of brain slices with graded hyperosmolality suggested an exaggerated response of AVP secretion in TRPV4-/- mice. Thus TRPV4 in the brain may transmit a negative signal to AVP secretion similar to an inhibitory pass through the baroregulatory system. Thus, in the regulation of serum osmolality, TRPV4 is a swell-activated channel that appears to play a role in reversion toward hyposmolality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abnormal osmotic regulation in trpv4-/- mice.

Osmotic homeostasis is one of the most aggressively defended physiological parameters in vertebrates. However, the molecular mechanisms underlying osmotic regulation are poorly understood. The transient receptor potential channel, vanilloid subfamily (TRPV4), is an osmotically activated ion channel that is expressed in circumventricular organs in the mammalian CNS, which is an important site of...

متن کامل

Hypertonicity sensing in organum vasculosum lamina terminalis neurons: a mechanical process involving TRPV1 but not TRPV4.

Primary osmosensory neurons in the mouse organum vasculosum lamina terminalis (OVLT) transduce hypertonicity via the activation of nonselective cation channels that cause membrane depolarization and increased action potential discharge, and this effect is absent in mice lacking expression of the transient receptor potential vanilloid 1 (Trpv1) gene (Ciura and Bourque, 2006). However other exper...

متن کامل

TRPV4 deficiency increases skeletal muscle metabolic capacity and resistance against diet-induced obesity.

Transient receptor potential channel V4 (TRPV4) functions as a nonselective cation channel in various cells and plays physiological roles in osmotic and thermal sensation. However, the function of TRPV4 in energy metabolism is unknown. Here, we report that TRPV4 deficiency results in increased muscle oxidative capacity and resistance to diet-induced obesity in mice. Although no difference in bo...

متن کامل

Reduced tissue osmolarity increases TRPV4 expression and pro-inflammatory cytokines in intervertebral disc cells.

The mechanical behaviour and cellular metabolism of intervertebral discs (IVDs) and articular cartilage are strongly influenced by their proteoglycan content and associated osmotic properties. This osmotic environment is a biophysical signal that changes with disease and may contribute to the elevated matrix breakdown and altered biologic response to loading observed in IVD degeneration and ost...

متن کامل

Heat-evoked activation of the ion channel, TRPV4.

The mammalian nervous system constantly evaluates internal and environmental temperatures to maintain homeostasis and to avoid thermal extremes. Several members of the transient receptor potential (TRP) family of ion channels have been implicated as transducers of thermal stimuli, including TRPV1 and TRPV2, which are activated by heat, and TRPM8, which is activated by cold. Here we demonstrate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 285 1  شماره 

صفحات  -

تاریخ انتشار 2003